Source code for pymcmcstat.chain.ChainStatistics

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 26 10:23:51 2018

@author: prmiles
"""

# import required packages
import numpy as np
import numpy.matlib as npm
import sys
import scipy
import scipy.stats
from scipy.fftpack import fft
from ..plotting.utilities import generate_default_names, extend_names_to_match_nparam
from .ChainProcessing import generate_chain_list

# display chain statistics
[docs]def chainstats(chain = None, results = None, returnstats = False): ''' Calculate chain statistics. Args: * **chain** (:class:`~numpy.ndarray`): Sampling chain. * **results** (:py:class:`dict`): Results from MCMC simulation. * **returnstats** (:py:class:`bool`): Flag to return statistics. Returns: * **stats** (:py:class:`dict`): Statistical measures of chain convergence. ''' if chain is None: prst = str('No chain reported - run simulation first.') print(prst) return prst else: nsimu, npar = chain.shape names = get_parameter_names(npar, results) # calculate mean and standard deviation of entire chain meanii = [] stdii = [] for ii in range(npar): meanii.append(np.mean(chain[:,ii])) stdii.append(np.std(chain[:,ii])) # calculate batch mean standard deviation bmstd = batch_mean_standard_deviation(chain) mcerr = bmstd/np.sqrt(nsimu) # calculate geweke's MCMC convergence diagnostic z,p = geweke(chain) # estimate integrated autocorrelation time tau, m = integrated_autocorrelation_time(chain) # print statistics print_chain_statistics(names, meanii, stdii, mcerr, tau, p) # assign stats to dictionary stats = {'mean': list(meanii), 'std': list(stdii), 'bmstd': list(bmstd), 'mcerr': list(mcerr), 'geweke': {'z': list(z), 'p': list(p)}, 'iact': {'tau': list(tau), 'm': list(m)} } if returnstats is True: return stats
# ----------------------------------------------------
[docs]def batch_mean_standard_deviation(chain, b = None): ''' Standard deviation calculated from batch means Args: * **chain** (:class:`~numpy.ndarray`): Sampling chain. * **b** (:py:class:`int`): Step size. Returns: * **s** (:class:`~numpy.ndarray`): Batch mean standard deviation. ''' nsimu, npar = chain.shape # determine step size if b is None: b = max(10,np.fix(nsimu/20)) b = int(b) # define indices inds = np.arange(0,nsimu+1,b) nb = len(inds)-1 if nb < 2: sys.exit('too few batches') # initialize batch mean array y = np.zeros([nb, npar]) # calculate mean of each batch for ii in range(nb): y[ii,:] = np.mean(chain[inds[ii]:inds[ii+1],:],0) # calculate estimated standard deviation of MC estimate s = np.sqrt(sum((y - npm.repmat(np.mean(chain,0),nb,1))**2)/(nb-1)*b) return s
# ----------------------------------------------------
[docs]def geweke(chain, a = 0.1, b = 0.5): ''' Geweke's MCMC convergence diagnostic Test for equality of the means of the first a% (default 10%) and last b% (50%) of a Markov chain - see :cite:`brooks1998assessing`. Args: * **chain** (:class:`~numpy.ndarray`): Sampling chain. * **a** (:py:class:`float`): First a% of chain. * **b** (:py:class:`float`): Last b% of chain. Returns: * **z** (:class:`~numpy.ndarray`): Convergence diagnostic prior to CDF. * **p** (:class:`~numpy.ndarray`): Geweke's MCMC convergence diagnostic. .. note:: The percentage of the chain should be given as a decimal between zero and one. So, for the first 10% of the chain, define :code:`a = 0.1`. Likewise, for the last 50% of the chain, define :code:`b = 0.5`. ''' nsimu = chain.shape[0] # determine integer locations based on percentages na = int(np.floor(a*nsimu)) nb = nsimu - int(np.floor(b*nsimu)) # check sizes if (na + nb) >= nsimu: sys.exit('na + nb = {}, > nsimu = {}'.format(na+nb,nsimu)) # calculate mean chain responses m1 = np.mean(chain[0:na,:],0) m2 = np.mean(chain[nb:nsimu+1,:],0) # calculate spectral estimates for variance sa = spectral_estimate_for_variance(chain[0:na,:]) sb = spectral_estimate_for_variance(chain[nb:nsimu+1,:]) z = (m1 - m2)/(np.sqrt(sa/na + sb/(nsimu - nb))) p = 2*(1-scipy.stats.norm.cdf(np.abs(z))) return z, p
[docs]def spectral_estimate_for_variance(x): ''' Spectral density at frequency zero. Args: * **x** (:class:`~numpy.ndarray`): Array of points - portion of chain. Returns: * **s** (:class:`~numpy.ndarray`): Spectral estimate for variance. ''' m,n = x.shape s = np.zeros([n,]) for ii in range(n): y = power_spectral_density_using_hanning_window(x[:,ii],m) s[ii] = y[0] return s
[docs]def power_spectral_density_using_hanning_window(x, nfft = None, nw = None): ''' Power spectral density using Hanning window. Args: * **x** (:class:`~numpy.ndarray`): Array of points - portion of chain. * **nfft** (:py:class:`int`): Length of Fourier transform. * **nw** (:py:class:`int`): Size of window. Returns: * **y** (:class:`~numpy.ndarray`): Power spectral density. ''' if nfft is None: nfft = min(len(x),256) if nw is None: nw = int(np.fix(nfft/4)) noverlap = int(np.fix(nw/2)) # define hanning window w = 0.5*(1-np.cos(2*np.pi*np.arange(1,nw+1)/(nw+1))) n = len(x) if n < nw: x[nw+1] = 0 n = nw # number of windows k = int(np.fix((n - noverlap)/(nw - noverlap))) index = np.arange(nw) # 0,1,...,nw-1 kmu = k*np.linalg.norm(w)**2 # normalizing scale factor # initialize array y = np.zeros([nfft,1]) for ii in range(k): xw = w*x[index] index = index + (nw - noverlap) Xx = np.abs(fft(xw,nfft)**2).reshape(nfft,1) y = y + Xx y = y*(1/kmu) # normalize n2 = int(np.floor(nfft/2)) y = y[0:n2] # f = 1/n*np.arange(0,n2) return y
# ----------------------------------------------------
[docs]def integrated_autocorrelation_time(chain): ''' Estimates the integrated autocorrelation time using Sokal's adaptive truncated periodogram estimator. Args: * **chain** (:class:`~numpy.ndarray`): Sampling chain. Returns: * **tau** (:class:`~numpy.ndarray`): Autocorrelation time. * **m** (:class:`~numpy.ndarray`): Counter. ''' # get shape of chain npar = chain.shape[1] # initialize arrays tau = np.zeros([npar,]) m = np.zeros([npar,]) x = fft(chain,axis=0) xr = np.real(x) xi = np.imag(x) xmag = xr**2 + xi**2 xmag[0,:] = 0. xmag = np.real(fft(xmag,axis=0)) var = xmag[0,:]/len(chain)/(len(chain)-1) for jj in range(npar): if var[jj] == 0: continue xmag[:,jj] = xmag[:,jj]/xmag[0,jj] snum = -1/3 for ii in range(len(chain)): snum = snum + xmag[ii,jj] - 1/6 if snum < 0: tau[jj] = 2*(snum + (ii)/6) m[jj] = ii + 1 break return tau, m
# ----------------------------------------------------
[docs]def gelman_rubin(chains, names = None, results = None, display = True): ''' Gelman-Rubin diagnostic for multiple chains :cite:`gelman1992inference`. This diagnostic technique compares the variance within a single change to the variance between multiple chains. This process serves as a method for testing whether or not the chain has converged. If the chain has converged, we would expect the variance within and the variance between to be equal. This diagnostic tool pairs well with the ParallelMCMC module, which generates a set of distinct chains that have all been initialized at different points within the parameter space. Args: * **chains** (:py:class:`list`): List of arrays - each array corresponds to different chain set. * **names** (:py:class:`list`): List of strings - corresponds to parameter names. * **results** (:py:class:`dict`): Results from MCMC simulation. Returns: * (:py:class:`dict`): Keywords of the dictionary correspond to the parameter names. Each keyword corresponds to a dictionary outputted from :meth:`calculate_psrf`. ''' # check what chains is if isinstance(chains[0], dict): chains = generate_chain_list(chains) nchains = len(chains) nsimu, nparam = chains[0].shape if names is None: names = get_parameter_names(nparam, results) if nchains < 2: raise ValueError('Diagnostic method requires multiple chains') # assemble arrays for separate parameters par = dict() for ii, name in enumerate(names): tmp = np.zeros([nsimu, nchains]) for jj in range(nchains): tmp[:,jj] = chains[jj][:,ii] par[name] = tmp psrf = dict() for name in names: psrf[name] = calculate_psrf(par[name], nsimu, nchains) if display is True: display_gelman_rubin(psrf) return psrf
[docs]def calculate_psrf(x, nsimu, nchains): ''' Calculate Potential Scale Reduction Factor (PSRF) Performs analysis of variances for set of chains corresponding to a single parameter. This code follows the MATLAB implementation found here: https://users.aalto.fi/~ave/code/mcmcdiag/ Args: * **x** (:class:`~numpy.ndarray`): Expect an [nsimu x nchains] array. * **nsimu** (:py:class:`int`): Number of simulations in each chain. * **nchains** (:py:class:`int`): Number of chains. Returns: * :py:class:`dict` \\ - R - PSRF \\ - B - Between Sequence Variances \\ - W - Within Sequence Variances \\ - V - Mixture-of-Sequences Variances \\ - neff - Effective number of samples ''' # Estimated Between Sequence Variances Per Number of Simulations Bpn = np.var(np.mean(x, axis=0), axis=0, ddof=1) # Estimated Within Sequence Variances W = np.mean(np.var(x, axis=0, ddof=1), axis=0) S = (nsimu - 1)/nsimu * W + Bpn; R = (nchains + 1) / nchains * S / W - (nsimu - 1) / nchains / nsimu # Estimated Mixture-of-Sequences Variances V = R * W # Potential Scale Reduction Factor - PSRF R = np.sqrt(R) # Estimated Between Sequence Variances B = Bpn * nsimu # estimated effective number of samples neff = min(nchains * nsimu * V / B, nchains * nsimu); return dict(R = R, B = B, W = W, V = V, neff = neff)
# ----------------------------------------------------
[docs]def display_gelman_rubin(psrf): ''' Display results of Gelman-Rubin diagnostic Args: * **psrf** (:class:`dict`): Results from GR diagnostic ''' for _, ps in enumerate(psrf): print('Parameter: {}'.format(ps)) for _, k in enumerate(psrf[ps].keys()): print(' {} = {}'.format(k, psrf[ps][k]))
# ----------------------------------------------------
[docs]def get_parameter_names(nparam, results): ''' Get parameter names from results dictionary. If no results found, then default names are generated. If some results are found, then an extended set is generated to complete the list requirement. Uses the functions: :func:`~.plotting.utilities.generate_default_names` and :func:`~.plotting.utilities.extend_names_to_match_nparam` Args: * **nparam** (:py:class:`int`): Number of parameter names needed Returns: * **names** (:py:class:`list`): List of length `nparam` with strings. ''' if results is None: # results not specified names = generate_default_names(nparam) else: names = results['names'] names = extend_names_to_match_nparam(names, nparam) return names